Dual-tail arylsulfone-based benzenesulfonamides differently match the hydrophobic and hydrophilic halves of human carbonic anhydrases active sites: Selective inhibitors for the tumor-associated hCA IX isoform

Eur J Med Chem. 2018 May 25:152:1-9. doi: 10.1016/j.ejmech.2018.04.016. Epub 2018 Apr 10.

Abstract

The synthesis and characterization of two new sets of arylsulfonehydrazone benzenesulfonamides (4a-4i with phenyl tail and 4j-4q with tolyl tail) are reported. The compounds were designed according to a dual-tails approach to modulate the interactions of the ligands portions at the outer rim of both hydrophobic and hydrophilic active site halves of human isoforms of carbonic anhydrase (CA, EC 4.2.1.1). The synthesized sulfonamides were evaluated in vitro for their inhibitory activity against the following human (h) isoforms, hCA I, II, IV and IX. With the latter being a validated anticancer drug target and a marker of tumor hypoxia, attractive results arose from the Compounds' inhibitory screening in terms of potency and selectivity. Indeed, whereas the first subset of compounds 4a-4i exhibited great efficacy in inhibiting both the ubiquitous, off-target hCA II (KIs 9.5-172.0 nM) and hCA IX (KIs 7.5-131.5 nM), the second subset of tolyl-bearing derivatives 4j-4q were shown to possess a selective hCA IX inhibitory action over isoforms I, II and IV. The most selective compounds 4l and 4n were further screened for their in vitro cytotoxic activity against MCF-7 and MDA-MB-231 cancer cell lines under hypoxic conditions. The selective IX/II inhibitory trend of 4j-4q compared to those of compounds 4a-4i was unveiled by docking studies. Further exploration of these molecules could be useful for the development of novel antitumor agents with a selective CA inhibitory mechanism.

Keywords: Anti-tumor; Carbonic anhydrase; Dual-tails; Selectivity; Zinc-binding group; hCA IX.

MeSH terms

  • Antigens, Neoplasm / metabolism
  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Benzenesulfonamides
  • Carbonic Anhydrase IX / antagonists & inhibitors*
  • Carbonic Anhydrase IX / metabolism
  • Carbonic Anhydrase Inhibitors / chemical synthesis
  • Carbonic Anhydrase Inhibitors / chemistry
  • Carbonic Anhydrase Inhibitors / pharmacology*
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Dose-Response Relationship, Drug
  • Drug Screening Assays, Antitumor
  • Humans
  • Hydrophobic and Hydrophilic Interactions
  • Isoenzymes / antagonists & inhibitors
  • Isoenzymes / metabolism
  • MCF-7 Cells
  • Molecular Docking Simulation
  • Molecular Structure
  • Structure-Activity Relationship
  • Sulfonamides / chemical synthesis
  • Sulfonamides / chemistry
  • Sulfonamides / pharmacology*
  • Sulfones / chemistry
  • Sulfones / pharmacology*

Substances

  • Antigens, Neoplasm
  • Antineoplastic Agents
  • Carbonic Anhydrase Inhibitors
  • Isoenzymes
  • Sulfonamides
  • Sulfones
  • CA9 protein, human
  • Carbonic Anhydrase IX